User Tools

Site Tools


start

We combine machine learning, text-mining, and prior knowledge in medical ontologies to discover hidden trends, build risk models, and drive comparative effectiveness studies to enable the learning health system. Our research group is part of the Center for Biomedical Informatics Research at Stanford and the National Center for Biomedical Ontology.

Research

We have shown that using unstructured data, it is possible to monitor for adverse drug events, learn drug-drug interactions, identify off-label drug usage, generate practice-based evidence for difficult-to-test clinical hypotheses, identify new medical insights, and generate phenotypic fingerprints as well as build predictive models. Our efforts in drug safety surveillance were recently the focus of a commentary titled Advancing the Science of Pharmacovigilance.

Learning Health System examples:

Data mining for drug safety:

Phenotypic profiling:

Effectiveness of large datasets and simple methods:

Group information

Teaching

BIOMEDIN 215 Data Driven Medicine Autumn quarter of each year

Contact

Talks

start.txt · Last modified: 2015/06/11 13:42 by nigam