User Tools

Site Tools


foundationmodels

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
foundationmodels [2024/03/07 17:51]
nigam
foundationmodels [2024/03/15 15:04] (current)
nigam
Line 11: Line 11:
 See the full post at [[https://hai.stanford.edu/news/how-foundation-models-can-advance-ai-healthcare|How Foundation Models Can Advance AI in Healthcare]]. To support the claims made in the post, we have built and released two foundation models: See the full post at [[https://hai.stanford.edu/news/how-foundation-models-can-advance-ai-healthcare|How Foundation Models Can Advance AI in Healthcare]]. To support the claims made in the post, we have built and released two foundation models:
  
-  - [[https://clmbr.stanford.edu/ | CLMBR (clinical language modeling based representations)]] is a 141 million parameter autoregressive foundation model pretrained on 2.57 million deidentified EHRs from Stanford Medicine. This model is based on the CLMBR architecture originally described in [[https://www.sciencedirect.com/science/article/pii/S1532046420302653 |Steinberg et al. 2021]]. As input, this model expects a sequence of coded medical events that have been mapped to Standard Concepts within the OMOP-CDM vocabulary. The model generates representations of patients which can then be used for downstream prediction tasks. Such patient representation schemes enable a 3.5% mean improvement in AUROC on five prediction tasks compared to standard baselines, with the average improvement rising to 19% when only a small number of patient records are available for training the clinical prediction model. The model is available at – https://huggingface.co/StanfordShahLab/clmbr-t-base.  +  - [[https://clmbr.stanford.edu/ | CLMBR (clinical language modeling based representations)]] is a 141 million parameter autoregressive foundation model pretrained on 2.57 million deidentified EHRs from Stanford Medicine. This model is originally described in [[https://www.sciencedirect.com/science/article/pii/S1532046420302653 |Steinberg et al. 2021]]. As input, this model expects a sequence of coded medical events that have been mapped to Standard Concepts within the OMOP-CDM vocabulary. The model generates representations of patients which can then be used for downstream prediction tasks. Such patient representation schemes enable a 3.5% mean improvement in AUROC on five prediction tasks compared to standard baselines, with the average improvement rising to 19% when only a small number of patient records are available for training the clinical prediction model. The model is available at – https://huggingface.co/StanfordShahLab/clmbr-t-base.  
-  - [[https://goto.stanford.edu/motor | MOTOR (Many Outcome Time Oriented Representations)]] is a self-supervised, time-to-event (TTE) 143M parameter foundation model which is pretrained on timestamped sequences of events in 55 million electronic health records (EHR) comprising 9 billion clinical events. We evaluate MOTOR's performance on 19 tasks, across 3 patient databases (a private EHR system, MIMIC-IV, and Merative claims data). Task-specific models adapted from MOTOR improve time-dependent C statistics by 4.6% over state-of-the-art, improve label efficiency by up to 95% ,and are more robust to temporal distributional shifts. The model is available at - https://huggingface.co/StanfordShahLab/motor-t-base+  - [[https://goto.stanford.edu/motor | MOTOR (Many Outcome Time Oriented Representations)]] is a self-supervised, time-to-event (TTE) 143M parameter foundation model which is pretrained on timestamped sequences of events in 55 million electronic health records (EHR) comprising 9 billion clinical events. This model is originally described in [[https://arxiv.org/abs/2301.03150 |Steinberg et al. 2024]]. We evaluate MOTOR's performance on 19 tasks, across 3 patient databases (a private EHR system, MIMIC-IV, and Merative claims data). Task-specific models adapted from MOTOR improve time-dependent C statistics by 4.6% over state-of-the-art, improve label efficiency by up to 95% ,and are more robust to temporal distributional shifts. The model is available at - https://huggingface.co/StanfordShahLab/motor-t-base
  
foundationmodels.txt · Last modified: 2024/03/15 15:04 by nigam