User Tools

Site Tools


rail

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
rail [2023/11/09 10:22]
nigam
rail [2024/05/12 10:55] (current)
nigam
Line 1: Line 1:
 ====== Responsible AI in Healthcare ====== ====== Responsible AI in Healthcare ======
  
-In healthcarepredictive models play a role not unlike that of blood testsX-raysor MRIsThey influence decisions about whether an intervention is appropriate. Whether a model is usefulness depends on the interplay between the model's output, the intervention it triggers, and the intervention’s benefits and harms. We are working on a set of efforts collectively referred to as the [[https://stanfordhealthcare.org/stanford-health-now/ceo-report/advancing-precision-health-takes-real-smarts.html|Stanford Medicine Program for Artificial Intelligence in Healthcare]], with the mission of bringing AI technologies to the clinic, safely, cost-effectively and ethically via the work of the [[https://dsatshc.stanford.edu/ | Data Science Team at Stanford Healthcare]]+Our team is focused on bringing AI into clinical usesafely, ethically and cost effectively. Our work is organized in two broad work-streams. 
 + 
 +===== Creation and adoption of foundation models in medicine ===== 
 + 
 +Given the high interest in using large language models (LLMs) in medicine, the [[https://jamanetwork.com/journals/jama/fullarticle/2808296|creation and use of LLMs in medicine]] needs to be actively shaped by provisioning relevant training dataspecifying the desired benefitsand evaluating the benefits via testing in real-world deployments. 
 + 
 +{{  :verify-benefits.png?nolink&400  }} 
 + 
 +We study whether commercial language models [[https://arxiv.org/abs/2304.13714|support real-world needs]] or can follow [[https://medalign.stanford.edu/|medical instructions (MedAlign)]] that clinicians would expect them to follow. We build clinical foundation models such as [[https://www.sciencedirect.com/science/article/pii/S1532046420302653| CLMBR]], [[https://arxiv.org/abs/2301.03150| MOTOR]] and verify their benefits such as [[https://www.nature.com/articles/s41598-023-30820-8| robustness over time]], [[https://pubmed.ncbi.nlm.nih.gov/37639620/| populations]] and [[https://arxiv.org/abs/2311.11483| sites]]. we release de-identified datasets such as [[https://ehrshot.stanford.edu/| EHRSHOT]] for few-shot evaluation of foundation models and multi-modal datasets such as [[https://inspect.stanford.edu/| INSPECT]]. 
 + 
 + 
 +===== Making machine learning models clinically useful ===== 
 + 
 +Whether a classifier or prediction [[ https://jamanetwork.com/journals/jama/article-abstract/2748179 | model is useful]] in guiding care depends on the interplay between the model's output, the intervention it triggers, and the intervention’s benefits and harms. Our work stemmed from the effort [[http://stanmed.stanford.edu/2018summer/artificial-intelligence-puts-humanity-health-care.html|in improving palliative care]] using machine learning. [[https://www.tinyurl.com/hai-blogs Blog posts at HAI]] summarize our work in easily accessible manner. 
  
 {{  :model-interplay.png?400&nolink&  }} {{  :model-interplay.png?400&nolink&  }}
  
-[[https://www.tinyurl.com/hai-blogs | Blog posts at HAI]] summarize our work in easily accessible manner. Our research stemmed from the effort [[http://stanmed.stanford.edu/2018summer/artificial-intelligence-puts-humanity-health-care.html|in improving palliative care]] using machine learning. [[https://jamanetwork.com/journals/jama/fullarticle/2748179?guestAccessKey=8cef0271-616d-4e8e-852a-0fddaa0e5101|Ensuring that machine learning models are clinically useful]] requires [[https://www.nature.com/articles/s41591-019-0651-8| estimating the hidden deployment cost of predictive models]] as well as quantifying the [[http://academic.oup.com/jamia/article/28/6/1149/6045012|impact of work capacity constraints]] on achievable benefit, estimating [[https://www.sciencedirect.com/science/article/pii/S1532046421001544|individualized utility]], and learning [[https://pubmed.ncbi.nlm.nih.gov/34350942/|optimal decision thresholds]]. Pre-empting [[https://www.nejm.org/doi/full/10.1056/NEJMp1714229|ethical challenges]] often requires keeping [[https://hai.stanford.edu/news/when-algorithmic-fairness-fixes-fail-case-keeping-humans-loop|humans in the loop]] and focus on examining the [[https://informatics.bmj.com/content/29/1/e100460|consequences of model-guided decision making]] in the presence of clinical care guidelines.+We study how to quantify the [[https://www.sciencedirect.com/science/article/pii/S1532046423000400|impact of work capacity constraints]] on achievable benefit, estimate [[https://www.sciencedirect.com/science/article/pii/S1532046421001544|individualized utility]], and learn [[https://pubmed.ncbi.nlm.nih.gov/34350942/|optimal decision thresholds]]. We question conventional wisdom on whether models [[https://tinyurl.com/donot-explain | need to be explainable]], and [[https://www.nature.com/articles/s41591-023-02540-z |generalizable]]. We examine if consequences of using [[https://hai.stanford.edu/news/when-algorithmic-fairness-fixes-fail-case-keeping-humans-loop | algorithm guided care are fair]] and how to [[https://hai.stanford.edu/news/how-do-we-ensure-healthcare-ai-useful | ensure that healthcare models are useful]]. We study this interplay to guide the work of the [[https://dsatshc.stanford.edu/ Data Science Team at Stanford Healthcare]]. 
  
----- 
  
-{{youtube>GNTIoEADfY4?small | Artificial Intelligence transforms health care}} 
  
-Russ Altman and Nigam Shah taking an in-depth look at the growing influence of “data-driven medicine.” 
  
rail.1699554155.txt.gz · Last modified: 2023/11/09 10:22 by nigam